PEP-mini 迷你垂直电泳仪

使用说明

目录

— 、	基	基本资料	3
	1.	产品简介	3
	3.	化学兼容性	4
	4.	安全须知	4
_,	组	且装及基本操作	5
	1.	制备凝胶三明治	5
		(1) 组装三明治灌胶槽	5
		(2) 灌胶	
	2.	组装电泳模块与上样电泳	6
		(1) 组装电泳模块	6
		(2) 将电极装置装入缓冲液槽	6
		(3) 上样	
		(4) 装配电泳槽	8
		(5) 设置电源参数	8
		(6) 取出凝胶	8
三、	疑	承难解答	
四、	质	5量保证	11

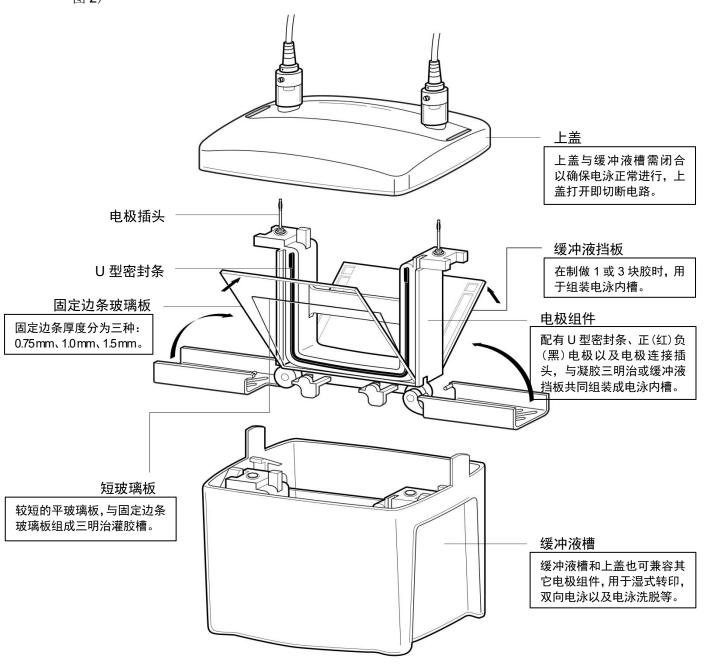
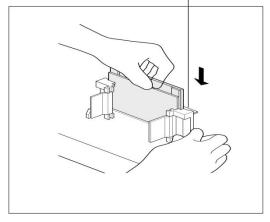
一、基本资料

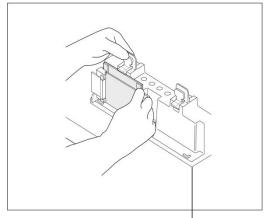
1. 产品简介

本产品由迷你垂直电泳槽和制胶装置两部分组成。电泳槽能够容纳 1~4 块手灌胶或预制胶,使用者可根据科研需求灵活地进行选择。制胶装置中特制的制胶架和具有固定边条的玻璃板,可以极大简化制胶流程,并有效防止漏胶的发生。缓冲液槽和上盖也可兼容其它电极组件,用于湿式转印,双向电泳以及电泳洗脱等。

2. 产品组成

为获得最佳效果,在正式使用前,请先熟悉各部件及其组装与分解操作。(参照图 1、图 2)


图 1 PEP-mini 电泳槽组装示意图

制胶架

放置于平整操作台上, 使固定边 条玻璃板和短玻璃板下缘对齐。

制胶底座

通过弹簧夹将三明治灌胶槽固定在密封胶垫上,从而使灌胶槽底部密封。

图 2 制胶架和制胶底座组装示意图

3. 化学兼容性

PEP-mini 电泳槽的所有组件均不可接触丙酮或乙醇,使用有机溶剂造成的损坏均不在保修范围之内。

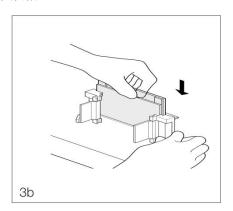
各组件不能反复接触 100% TEMED (四甲基乙二胺)。制胶前用 TEMED 摩擦制胶梳,长期会导致梳子结构完整性的损坏。

4. 安全须知

当上盖被打开时电流即被切断,请勿尝试在没有上盖的情况下使用本设备。

注意:雅酶产品从设计到生产均符合认定的安全标准,严格按照使用说明进行的操作均是安全的。该设备不可以任何方式进行改造,否则可能会对人身安全造成危害。任何不按照说明书操作导致的意外损害,本公司不承担相关责任。

二、组装及基本操作


1. 制备凝胶三明治

- (1) 组装三明治灌胶槽
 - a. 将制胶架垂直放置于水平操作台上,并使其合页处于开放状态;
 - b. 按所需凝胶厚度选择相应的固定边条玻璃板,并将短玻璃板放置其上(见图 **3a**):
 - c. 使固定边条玻璃板的标记端向上,将两块玻璃板滑入制胶架中,短玻璃板一面朝向前方(见图 3b);

注意: 确认两块玻璃板平齐处于水平面上,且标记端方向正确。玻璃板未对齐 或方向错误会导致漏胶的发生。

- d. 玻璃板安装到位后关闭制胶架合页,将玻璃板夹紧在制胶架中(见图 3c)。检查两块玻璃板底部是否平齐;
- e. 保持制胶架合页关闭,将制胶架放置于制胶底座的密封垫上,同时将弹簧夹压 在固定边条玻璃板上(见图 3d),即组装完成三明治灌胶槽;
- f. 重复步骤 a~e 可组装完成另一块三明治灌胶槽。

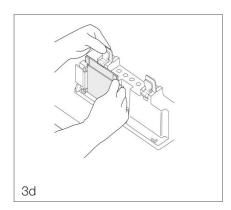


图 3 三明治灌胶槽组装示意图

(2) 灌胶

- ◆ 不连续聚丙烯酰胺凝胶
- a. 将制胶梳完全插入组合好的三明治灌胶槽中,在梳齿下端 1 cm 处作标记,此标记即为分离胶高度;
- b. 根据相应配方,混合所有试剂制作分离胶溶液。将溶液注入两玻璃板之间的灌胶槽中,直至标记处。立即加入适量水或醇(如异丙醇、正丁醇等)覆盖于胶溶液之上;

注意: ① 请轻缓注入胶溶液,以防止混入空气;

- ② 如用水覆盖分离胶,须缓慢平稳加入以防水与胶溶液混合。
- c. 放置 45~60 min 使凝胶聚合(或根据不同品牌配胶试剂盒的要求,来判断凝胶情况),倒去上层水或醇。可用蒸馏水彻底清洗凝胶表面,以去除醇类物质; 注意:请勿使醇类物质停留在凝胶上超过 1h,以防上部凝胶脱水。
- d. 配制浓缩胶溶液,并注入灌胶槽中直至与短玻璃板平齐。在边条之间,从上部将制胶梳缓慢插入灌胶槽内的胶溶液中,必须确保梳子两端的突起位于边条之间,完全插入直至梳子背脊与短玻璃板对齐;

注意: 注入浓缩胶溶液前,可用滤纸吸干分离胶表面液体。

- e. 放置 30~45 min 使浓缩胶聚合 (或根据不同品牌配胶试剂盒的要求,来判断凝胶情况);
- f. 轻轻取出制胶梳,并用蒸馏水或缓冲液彻底清洗凝胶表面;
- g. 用蒸馏水或去离子水清洗用过的制胶架和制胶底座。
- ◆ 连续聚丙烯酰胺凝胶
- a. 根据相应配方,混合所有试剂制作分离胶溶液。将溶液注入玻璃板之间直至与 短玻璃板平齐;
- b. 在边条之间,从上部将制胶梳缓慢插入灌胶槽内的胶溶液中,必须确保梳子两端的突起位于边条之间,完全插入直至梳子背脊与短玻璃板对齐;
- c. 放置 45~60 min 使凝胶聚合(或根据不同品牌配胶试剂盒的要求,来判断凝胶情况):
- d. 轻轻取出制胶梳,并用蒸馏水或缓冲液彻底清洗凝胶表面;
- e. 用蒸馏水或去离子水清洗用过的制胶架和制胶底座。

2. 组装电泳模块与上样电泳

所需材料:

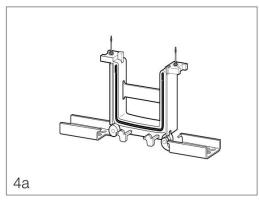
洁净干燥的缓冲液槽;

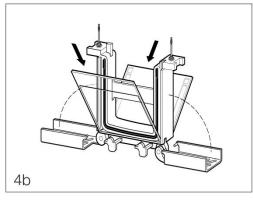
电极组件(1个电极组件只能用于1或2块胶电泳,做3或4块胶电泳则需要2个电极组件);

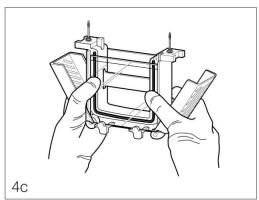
电泳缓冲液(1或2块胶需700mL,3或4块胶需1000mL);

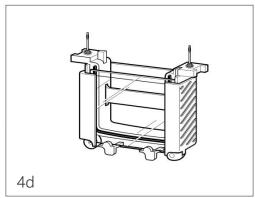
(1) 组装电泳模块

注意: 只运行 1 或 2 块胶电泳时只需使用电极头电极组件。运行 3 或 4 块胶时,电极头和蘑菇头电极组件均要使用,每个组件可运行 2 块胶的电泳。


- a. 将电极组件呈打开状态放置于干净平整操作台上(见图 4a);
- b. 从制胶架上取下制备好的凝胶三明治,并将第一块凝胶三明治以短玻璃板向内的方式,小心放置于电极组件的凝胶支撑架上(位于组件底部且每侧均有两个)。用同样的方法,在另一侧凝胶支撑架上放置第二块凝胶三明治(见图 4b):
 - 注意: ① 凝胶三明治必须以短玻璃板向内的方式放置于电极组件两侧;
 - ② 电极组件需要同 2 块凝胶三明治组合才能形成功能模块。如只需运行 1 或 3 块胶电泳,可使用缓冲液挡板代替一块凝胶三明治。
- c. 同时将 2 块凝胶三明治推向中心靠紧 U 型密封条,并确保短玻璃板上沿顶住密封条上端的台阶(见图 4c);接着双手同时向内合拢电极组件两侧的卡扣,使其锁定到位,卡扣会推动胶板使短玻璃板紧贴 U 型密封条,以防止漏液(请确认短玻璃板没有压住密封条台阶)(见图 4d)。
 - 注意: ① 凝胶三明治压住密封条台阶时,请勿合拢电极组件卡扣;
 - ② 运行 1 或 2 块胶电泳时,请勿将蘑菇头电极组件装入电泳仪中, 否则会产生额外的热量,影响电泳分离效果。


(2) 将电泳模块装入缓冲液槽


注意:缓冲液槽具有两个位置可放置两个电泳模块:电极头电泳模块在后,蘑菇头电泳模块在前。



- a. 将缓冲液槽放置于平整工作台上,使正面(具有 2-Gels 和 4-Gels 标记的一面) 朝前。如方向正确,槽边缘的红色标记应在右侧,黑色标记在左侧;
- b. 如运行 1 或 2 块凝胶电泳,则只需使用电极头电泳模块,将其置于缓冲液槽的后部位置,使红色(+) 电极与槽右侧的红色标记相对应(见图 4e);
- c. 如运行 3 或 4 块凝胶电泳,那么除在缓冲液槽后部位置放入电极头电泳模块外,还要将蘑菇头电泳模块放入前部位置。确认两者的红色(+)电极与槽右侧的红色标记相对应。如放入位置和方向发生错误,则上盖无法盖合。

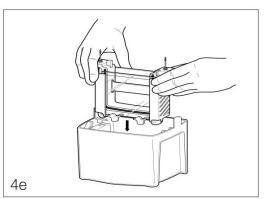


图 4 电泳模块组装示意图

(3) 上样

- a. 向电泳槽中注入电泳缓冲液,内槽加满,外槽至外玻璃板上沿之下,请务必确保内外槽电泳缓冲液不发生联通;
- b. 使用注射器或移液器将样品加入点样孔中(点样孔体积可参考表 1);

- **注意**: ① 如使用加样架辅助点样,可将其置于电泳模块的两块凝胶三明治之间,即可标记出点样孔的位置;
 - ② 加样时应使样品缓慢均匀沉降于点样孔底部,请勿用针头或移液器 吸头刺破胶孔底部。

孔数	每孔宽度	0.75 mm	1.0 mm	1.5 mm
5	12.7 mm	70 µL	105 µL	160 µL
9	5.08 mm	33 µL	44 µL	66 µL
10	5.08 mm	33 µL	44 µL	66 µL
15	3.35 mm	20 µL	26 µL	40 µL

表 1 凝胶每点样孔最大上样量

(4) 装配电泳槽

将上盖盖在缓冲液槽上。确认插头与插孔的颜色标记相对应,上盖附带的障碍物也可防止匹配错误。

注意:缓冲液槽两侧的突出部分应从上盖的狭缝中穿出,以保证上盖的正确闭合。此时需持续用力按压上盖,直到压紧在缓冲液槽上。

(5) 设置电源参数

- a. 将电源线插头插入电泳仪电源相应正负极插孔中;
- b. 给 PEP-mini 垂直电泳仪通电开始电泳。不同应用其优化的电压条件不尽不同,恒压 200 V 是 SDS-PAGE 和多数 native PAGE 电泳的推荐条件,同时适用于 2 块胶和 4 块胶的电泳。在 200 V 电压条件下运行 SDS-PAGE,大约需要 35 min 即可完成。

(6) 取出凝胶

- a. 电泳完成后,关断电源,拔出电源线插头;
- b. 移开上盖,小心取出电泳模块,倒出内槽电泳缓冲液。为防止缓冲液漏洒,请 在打开卡扣前倒掉缓冲液;
- c. 打开电极组件卡扣,取出凝胶三明治;
- d. 轻轻分离两块玻璃板,从凝胶三明治中取出凝胶。可保持胶面向下,将胶与玻璃板浸泡在缓冲液中,使凝胶与玻璃板分离;
- e. 用蒸馏水或去离子水清洗 PEP-mini 垂直电泳槽的电泳组件、缓冲液槽等。

三、疑难解答

问题	原因	解决方案
条带呈"微笑表情"—— 胶两端条带向上弯曲	胶中央温度高于两端	电泳缓冲液没有混合均匀或内槽中的缓冲液浓度过高。重新配制电泳缓冲液,特别当稀释 5×或10×储液时,要确保混合均匀
	电源功率过大	将设定电压从 200 V 调为 150 V;或将外槽缓冲液添加至短玻璃板上沿以下 1 cm 之内
条带垂直拖尾	上样量过大	稀释样品,选择性清除有影响的蛋白,或者将电压减小25%以弱化拖尾
	样品中有沉淀	在加入上样缓冲液前,将样品离心,或减小凝胶的浓度
		上样缓冲液中要加入足量SDS, 以确保蛋白表面被 SDS 覆盖完 全。SDS 对蛋白的比例一般为 1.4:1,但某些膜蛋白可能需要 更多的 SDS
条带横向散布	电泳未开始前,样品已发 生扩散	尽量缩短从上样到开始电泳之 间的时间
	样品离子强度低于凝胶	在样品中使用与凝胶相同的缓 冲液
条带扭曲或歪斜	点样孔聚合状况不佳	将 APS 和 TEMED 的用量提高 25%; 对于浓缩胶和低浓度分离 胶, 也可以维持 APS 用量不变, 将 TEMED 用量加倍
	样品含有盐分	透析除盐或用脱盐柱除盐
	浓缩胶和分离胶接触面 不平	液封时,须轻柔缓和加入水或 醇,避免其冲入浓缩胶溶液中
泳道中的蛋白条带在胶底 部收缩	样品离子强度高于周围 凝胶	对样品及邻近点样孔的样品进 行脱盐
电泳时间明显延长	电泳缓冲液浓度过高	检查电泳缓冲液配方,根据需求 将其稀释或重新配制
	样品所含盐分过多	对样品进行脱盐处理

问题	原因	解决方案
电泳速度过快	电泳缓冲液浓度过低	检查电流缓冲液配方,根据需求 将其浓缩或重新配制
	电压设定过高	将电源电压适当调低
单一蛋白却出现两条蛋白 条带(SDS-PAGE)	部分该蛋白可能在电泳过程中被再氧化;或在电泳前未被完全还原。	重新配制上样缓冲液,增加缓冲液中还原剂(β-me、DTT等)的浓度;或把 DTT 换成β-me
条带比预期的少,且示踪 染料前沿有颜色很深的带	蛋白质迁移到示踪染料 前沿	提高分离胶的浓度
	样品蛋白发生降解	使用蛋白酶抑制剂
内槽漏液	电泳模块组装不当	确保 U 型密封条干净无缺口,并 且短玻璃板上沿须在 U 型密封条 顶端的台阶之下
手工灌胶时发生漏液	玻璃板有缺口	确保玻璃板完好无缺
	固定边条玻璃板和短玻 璃板底部没有对齐	确保玻璃板排列正确
	制胶底座的密封垫有污渍或者有裂纹、磨损等	清洗干净制胶密封垫; 更换破损 的密封垫
点样孔底部成型差	催化剂使用量不当	配制新鲜催化剂溶液;或提高浓缩胶中催化剂浓度至 0.06% APS 和 0.12% TEMED
制胶架合页很难闭合或有杂音	制胶架合页的轴有粉末 残留	每次使用前必须清洗或擦去粉末 残留物

四、质量保证

雅酶 PEP-mini 垂直电泳仪为用户提供为期三年的质量保证。其间凡由产品的原料及制作工艺造成的产品缺陷,本公司均负责免费维修或更换。

如有下列情况发生,则产品不在质量保证范围之内:

- 1. 操作不当引起的损坏;
- 2. 由非本公司指定维修人员维修改造引起的损坏;
- 3. 一般性易损部件的损坏,如:铂金丝、玻璃板、制胶密封垫、电源线等;
- 4. 使用有机溶剂造成的损坏。

单位: 上海雅酶生物医药科技有限公司

地址:上海市闵行区立跃路 2995 号 1 号楼 5 楼

邮编: 201114

电话: 400 058 8030

网站: www.epizyme.cn

电子邮件: info@epizyme.cn

